首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comprehensive study on the solvation of mono- and divalent metal cations: Li+, Na+, K+, Be2+, Mg2+ and Ca2+
Authors:Rao J Srinivasa  Dinadayalane T C  Leszczynski Jerzy  Sastry G Narahari
Institution:Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, Andhra Pradesh, India.
Abstract:Hydration of mono- and divalent metal ions (Li(+), Na(+), K(+), Be(2+), Mg(2+) and Ca(2+)) has been studied using the DFT (B3LYP), second-order M?ller-Plesset (MP2) and CCSD(T) perturbation theory as well as the G3 quantum chemical methods. Double-zeta and triple-zeta basis sets containing both (multiple) polarization and diffuse functions were applied. Total and sequential binding energies are evaluated for all metal-water clusters containing 1-6 water molecules. Total binding energies predicted at lower levels of theory are compared with those from the high level G3 calculations, whereas the sequential binding energies are compared with available experimental values. An increase in the quality of the basis set from double-zeta to triple-zeta has a significant effect on the sequential binding energies, irrespective of the geometries used. Within the same group (I or II), the sequential binding energy predictions at the MP2 and B3LYP vary appreciably. We noticed that, for each addition of a water molecule, the change of the M-O distance in metal-water clusters is higher at the B3LYP than at the MP2 level. The charge of the metal ion decreases monotonically as the number of water molecules increase in the complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号