首页 | 本学科首页   官方微博 | 高级检索  
     


Use of competition kinetics with fast reactions of grignard reagents
Authors:Holm
Affiliation:Department of Organic Chemistry, Technical University of Denmark, Building 201, DK-2800 Lyngby, Denmark.
Abstract:Competition kinetics are useful for estimation of the reactivities of Grignard reagents if the reaction rates do not differ widely and if exact rates are not needed. If the rate of mixing is slower than the rate of reaction, the ratios between the rates of fast and slow reagents are found to be too small. This is concluded from experiments in which results obtained by competition kinetics are compared with results obtained directly by flow stream procedures. A clearer picture of the reactivity ratios is obtained when the highly reactive reagent is highly diluted with its competitor. A fast reagent may account for almost all the product even when present as only 1 part in 100 parts of the competing agent. In this way allylmagnesium bromide is estimated to react with acetone, benzophenone, benzaldehyde, and diethylacetaldehyde ca. 1.5 x 10(5) times faster than does butylmagnesium bromide. The rates found for the four substrates do not differ significantly, and it seems possible that there is a ceiling over the rate of reaction of this reagent, for example, caused by diffusion control. This may explain that competition kinetics using allylmagnesium bromide have failed to show kinetic isotope effects or effects of polar substituents with isotopically or otherwise substituted benzophenones. A recently reported alpha-deuterium secondary kinetic isotope effect for the reaction of benzaldehyde with allylmagnesium bromide was observed at -78 degrees C, but was absent at room temperature. It is suggested that the reaction of benzophenone and benzaldehyde with allylmagnesium bromide has a radical-concerted mechanism since no radical-type products are produced and since no color from an intermediate ketyl is observed even at -78 degrees C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号