首页 | 本学科首页   官方微博 | 高级检索  
     


Extended scenario analysis
Authors:Stephen M. Robinson
Affiliation:(1) Department of Industrial Engineering, University of Wisconsin-Madison, 53706 Madison, WI, USA
Abstract:Scenario analysis, as proposed by Rockafellar and Wets, is a stochastic programming technique employing discrete scenarios with known probabilities, usually covering several time periods. The requirement of nonaticipativity (not using future information to make present decisions) is enforced during the computational solution by using Spingarn's method of partial inverses. The scenario analysis method as proposed relies on separability (with respect to scenarios) of all problem elements except the nonanticipativity constraint.We show how, by making a little more use of the partial inverse technique, one can include nonseparable convex constraints in such a procedure. As an illustrative example, we show how to analyze a portfolio optimization problem of Markowitz type (minimize variance for a given return) using scenarios. This offers the prospect of extending classical portfolio analysis from models based on historical behavior to models incorporating future scenarios of any desired type.The research reported here was sponsored by the National Science Foundation under Grant CCR-8801489, and by the Air Force Systems Command, USAF, under Grant No. AFOSR-89-0058. The US Government has certain rights in this material, and is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
Keywords:Scenario analysis  partial inverse  resolvent iteration  proximal point iteration  monotone sum problem  portfolio optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号