首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrafast dynamics of metal complexes of tetrasulphonated phthalocyanines
Authors:Jarota Arkadiusz  Tondusson Marc  Galle Geoffrey  Freysz Eric  Abramczyk Halina
Institution:Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz, Poland.
Abstract:A promising material in medicine, electronics, optoelectronics, electrochemistry, catalysis, and photophysics, tetrasulphonated aluminum phthalocyanine (AlPcS(4)), is investigated by means of steady-state and time-resolved pump-probe spectroscopies. Absorption and steady-state fluorescence spectroscopy indicate that AlPcS(4) is essentially monomeric. Spectrally resolved pump-probe data are recorded on time scales ranging from femtoseconds to nanoseconds. The nature of these fast processes and pathways of the competing relaxation processes from the initially excited electronic states in aqueous and organic (dimethyl sulfoxide) solutions are discussed. The decays and bleaching recovery have been fitted in the ultrafast window (0-10 ps) and later time window extending to nanoseconds (0-1 ns). While the excited-state dynamics have been found to be sensitive to the solvent environment, we were able to show that the fast dynamics is described by three time constants in the ranges of 115-500 fs, 2-25 ps, and 150-500 ps. We were able to ascribe these three time constants to different processes. The shortest time constants have been assigned to vibrational wavepacket dynamics. The few picosecond components have been assigned to vibrational relaxation in the excited electronic states. Finally, the 150-500 ps components represent the decay from S(1) to the ground state. The experimental and theoretical treatment proposed in this paper provides a basis for a substantial revision of the commonly accepted interpretation of the Soret transition (B transition) that exists in the literature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号