首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Density functional theory study on the structure and capillary phase transition of a polymer melt in a slitlike pore: effect of attraction
Authors:Yu Yang-Xin  Gao Guang-Hua  Wang Xiao-Lin
Institution:Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. yangxyu@mail.tsinghua.edu.cn
Abstract:A density functional theory is proposed to investigate the effects of polymer monomer-monomer and monomer-wall attractions on the density profile, chain configuration, and equilibrium capillary phase transition of a freely jointed multi-Yukawa fluid confined in a slitlike pore. The excess Helmholtz energy functional is constructed by using the modified fundamental measure theory, Wertheim's first-order thermodynamic perturbation theory, and Rosenfeld's perturbative method, in which the bulk radial distribution function and direct correlation function of hard-core multi-Yukawa monomers are obtained from the first-order mean spherical approximation. Comparisons of density profiles and bond orientation correlation functions of inhomogeneous chain fluids predicted from the present theory with the simulation data show that the present theory is very accurate, superior to the previous theory. The present theory predicts that the polymer monomer-monomer attraction lowers the strength of oscillations for density profiles and bond orientation correlation functions and makes the excess adsorption more negative. It is interesting to find that the equilibrium capillary phase transition of the polymeric fluid in the hard slitlike pore occurs at a higher chemical potential than in bulk condition, but as the attraction of the pore wall is increased sufficiently, the chemical potential for equilibrium capillary phase transition becomes lower than that for bulk vapor-liquid equilibrium.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号