首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rate Coefficient for the Gas‐Phase OH + CHF=CF2 Reaction between 212 and 375 K
Authors:Munkhbayar Baasandorj  James B Burkholder
Institution:1. Earth System Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration, Boulder;2. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder
Abstract:Rate coefficients, k(T), for the OH + CHF=CF2 (trifluoroethylene, HFO‐1123) gas‐phase reaction were measured under pseudo–first‐order conditions using pulsed laser photolysis to produce OH radicals and pulsed laser induced fluorescence to measure the OH radical temporal profile. Rate coefficients were measured over the temperature range 212–375 K at total pressures between 20 and 500 Torr (He, N2 bath gas). The rate coefficient was found to be independent of pressure over this range of pressure with a temperature dependence that is described by the Arrhenius expression (3.04 ± 0.30) × 10–12 exp(312 ± 25)/T] cm3 molecule–1 s1 with k(296 K) measured to be (8.77 ± 0.80) × 10–12 cm3 molecule–1 s1 (quoted uncertainties are 2σ and include estimated systematic errors). Rate coefficients for the reaction of CHF=CF2 with 18OH and OD were also measured as part of this study at 296 and 373 K and a total pressure of ~25 Torr (He). The isotope measurements were used to evaluate the observed OH radical regeneration. CHF=CF2 is a very short‐lived substance with an atmospheric lifetime of ~1 day with respect to OH reactive loss, whereas the actual lifetime of CHF=CF2 will depend on the time and location of its emission. The global warming potential for CHF=CF2 on the 100‐year time horizon (GWP100) was estimated using the present results and a lifetime correction factor to be 3.9 × 10?3.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号