首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxidation of Antitubercular Drug Isoniazid by a Lipopathic Oxidant,Cetyltrimethylammonium Dichromate: A Mechanistic Study
Authors:Sarita Garnayak  Sabita Patel
Institution:Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769 008, India
Abstract:The oxidation of an antitubercular drug isoniazid by a lipopathic oxidant cetyltrimethylammonium dichromate (CTADC) in a nonpolar medium generates isonicotinic acid both in the presence and the absence of acetic acid. The conventional UV–vis spectrophotometric method is used to study the reaction kinetics. The occurrence of the Michaelis–Menten–type kinetics with respect to isoniazid confirms the binding of oxidant and substrate to form a complex before the rate‐determining step. The existence of the inverse solvent kinetic isotope effect, k(H2O)/ k(D2O) = 0.7, in an acid‐catalyzed reaction proposes a multistep reaction mechanism. A decrease in the rate constant with an increase in CTADC] reveals the formation of reverse micellar–type aggregates of CTADC in nonpolar solvents. In the presence of different ionic and nonionic surfactants, CTADC forms mixed aggregates and controls the reaction due to the charge on the interface and also due to partition of oxidant and substrate in two different domains. High negative entropy of activation (ΔS? = –145 and –159 J K?1 mol?1 in the absence and presence of acetic acid) proposes a more ordered and highly solvated transition state than the reactants. Furthermore, the solvent polarity‐reactivity relationship reveals (i) the presence of less polar and less ionic transition state compared to the reactants during the oxidation, (ii) differential contribution from nonpolar and dipolar aprotic solvents toward the reaction process, and (iii) the existence of polarity/hydrophobic switch at log P = 0.73. A suitable mechanism has been proposed on the basis of experimental results. These results may provide insight into the mechanism of isoniazid oxidation in hydrophobic environment and may assist in understanding the drug resistance in different location.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号