首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of a finite element solution module for the analysis of the dynamic behavior and balancing effects of an induction motor system
Authors:YS Chen  YD Cheng  JJ Liao  CC Chiou
Institution:

aDepartment of Mechanical Engineering, Yuan-Ze University, Chungli 320, Taiwan, ROC

Abstract:The study developed a multipurpose finite element solution module with the theoretical groundwork originated from principles of rotordynamics. This module is capable of solving many of the related rotating machine problems such as of the high speed gas bearing spindles and the electric machines. The goal of this paper is to utilize the developed solution module in investigating various aspects of the vibration behavior of an induction motor system for solving its failure problem of the shaft. Some of the crucial factors to the quality and performance of the motor, such as the vibration amplitude as resulted from the bearing wear, damping effects, mass unbalance, and the passing of system resonance critical speeds, are all investigated in the study. An efficient dual-rotor model is verified to have excellent accuracy when comparing the calculated frequency response function (FRF) with that from modal testing. The results of the transient orbit analysis indicate that the bearing stiffness and damping dominates the vibration amplitude remarkably. The effects both from the bearing damping as well as from the clamping–damping between the silicon steel core and the rotating shaft are all examined. It is noticed that the bearing damping plays the major role in the restraint of the vibration amplitudes of the rotor. For the analysis of vibration suppression with different eccentricities of the unbalanced masses, it is found that the adding of balance masses will normally suppress the vibration amplitude effectively until the point where an optimum amount that causes the minimum balanced vibration amplitudes is observed. Both the qualitative and quantitative analyses for the effectiveness of the balance mass added with different eccentricity ratios are studied. Thus, the critical adding mass ratio (i.e. the adding mass ratio at the minimum balanced amplitude factor) can also be predicted through its linear relationship with the eccentricity ratio. Based on all the findings through the study, it is concluded that the approach not only can solve the realistic shaft vibration failure problems of a motor and the demonstrated processes are also believed to be able to help the designers to have better command of motor performance at the system design stage.
Keywords:Balancing effect  Damping  Finite element analysis  Induction motor  Rotordynamics  Vibration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号