首页 | 本学科首页   官方微博 | 高级检索  
     


A general framework of compactly supported splines and wavelets
Authors:Charles K. Chui  Jian-zhong Wang
Abstract:Let {Vk} be a nested sequence of closed subspaces that constitute a multiresolution analysis of L2(). We characterize the family Φ = {φ} where each φ generates this multiresolution analysis such that the two-scale relation of φ is governed by a finite sequence. In particular, we identify the ε Φ that has minimum support. We also characterize the collection Ψ of functions η such that each η generates the orthogonal complementary subspaces Wk of Vk, . In particular, the minimally supported ψ ε Ψ is determined. Hence, the “B-spline” and “B-wavelet” pair (, ψ) provides the most economical and computational efficient “spline” representations and “wavelet” decompositions of L2 functions from the “spline” spaces Vk and “wavelet” spaces Wk, k. A very general duality principle, which yields the dual bases of both {(·−j):j and {η(·−j):j} for any η ε Ψ by essentially interchanging the pair of two-scale sequences with the pair of decomposition sequences, is also established. For many filtering applications, it is very important to select a multiresolution for which both and ψ have linear phases. Hence, “non-symmetric” and ψ, such as the compactly supported orthogonal ones introduced by Daubechies, are sometimes undesirable for these applications. Conditions on linear-phase φ and ψ are established in this paper. In particular, even-order polynomial B-splines and B-wavelets φm and ψm have linear phases, but the odd-order B-wavelet only has generalized linear phases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号