首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes in solvent exposure reveal the kinetics and equilibria of adsorbed protein unfolding in hydrophobic interaction chromatography
Authors:RW Deitcher  JP O’ConnellEJ Fernandez
Institution:Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904-4741, USA
Abstract:Hydrogen exchange has been a useful technique for studying the conformational state of proteins, both in bulk solution and at interfaces, for several decades. Here, we propose a physically based model of simultaneous protein adsorption, unfolding and hydrogen exchange in HIC. An accompanying experimental protocol, utilizing mass spectrometry to quantify deuterium labeling, enables the determination of both the equilibrium partitioning between conformational states and pseudo-first order rate constants for folding and unfolding of adsorbed protein. Unlike chromatographic techniques, which rely on the interpretation of bulk phase behavior, this methodology utilizes the measurement of a molecular property (solvent exposure) and provides insight into the nature of the unfolded conformation in the adsorbed phase. Three model proteins of varying conformational stability, α-chymotrypsinogen A, β-lactoglobulin B, and holo α-lactalbumin, are studied on Sepharose™ HIC resins possessing assorted ligand chemistries and densities. α-Chymotrypsinogen, conformationally the most stable protein in the set, exhibits no change in solvent exposure at all the conditions studied, even when isocratic pulse-response chromatography suggests nearly irreversible adsorption. Apparent unfolding energies of adsorbed β-lactoglobulin B and holo α-lactalbumin range from −4 to 3 kJ/mol and are dependent on resin properties and salt concentration. Characteristic pseudo-first order rate constants for surface-induced unfolding are 0.2–0.9 min−1. While poor protein recovery in HIC is often associated with irreversible unfolding, this study documents that non-eluting behavior can occur when surface unfolding is reversible or does not occur at all. Further, this hydrogen exchange technique can be used to assess the conformation of adsorbed protein under conditions where the protein is non-eluting and chromatographic methods are not applicable.
Keywords:Hydrophobic interaction chromatography  Protein folding  Protein adsorption  Thermodynamics  Kinetics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号