首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrospun glassy carbon ultra-thin layer chromatography devices
Authors:Jonathan E Clark  Susan V Olesik
Institution:The Ohio State University, Department of Chemistry, 120 West 18th Ave, Columbus, OH 43210, USA
Abstract:The development and application of electrospun glassy carbon nanofibers for ultra-thin layer chromatography (UTLC) are described. The carbon nanofiber stationary phase is created through the electrospinning and pyrolysis of SU-8 2100 photoresist. This results in glassy carbon nanofibers with diameters of ∼200–350 nm that form a mat structure with a thickness of ∼15 μm. The chromatographic properties of UTLC devices produced from pyrolyzed SU-8 heated to temperatures of 600, 800, and 1000 °C are described. Raman spectroscopy and scanning electron microscopy (SEM) are used to characterize the physical and molecular structure of the nanofibers at each temperature. A set of six laser dyes was examined to demonstrate the applicability of the devices. Analyses of the retention properties of the individual dyes as well as the separation of mixtures of three dyes were performed. A mixture of three FITC-labeled essential amino acids: lysine, threonine and phenylalanine, was examined and fully resolved on the carbon UTLC devices as well. The electrospun glassy carbon UTLC plates show tunable retention, have plate number, N, values above 10,000, and show physical and chemical robustness for a range of mobile phases.
Keywords:Thin layer chromatography  Glassy carbon  Electrospinning  Pyrolyzed photoresist  Nano-stationary phase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号