首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and application of a T-2 toxin imprinted polymer
Authors:David De Smet  Sofie Monbaliu  Peter Dubruel  Carlos Van Peteghem  Etienne Schacht  Sarah De Saeger
Affiliation:1. Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Food Analysis, Harelbekestraat 72, 9000 Ghent, Belgium;2. Ghent University, Faculty of Sciences, Polymer Chemistry and Biomaterials Research Group, Krijgslaan 281, 9000 Ghent, Belgium
Abstract:The synthesis of a T-2 toxin imprinted polymer and its application in food analysis are reported for the first time. A molecularly imprinted polymer (MIP) for the selective recognition of T-2 toxin (T-2) was synthesized by bulk polymerization. Methacrylamide and ethyleneglycol dimethacrylate were applied as functional monomer and cross-linker, respectively. Molecularly imprinted solid-phase extraction (MISPE) procedures were optimized for further application in the analysis of T-2. Scatchard plot analysis revealed that two classes of imprinted binding sites were formed in the imprinted polymer. The dissociation constant (KD) of the higher affinity binding sites was 7.0 μmol/l, while the KD of the lower affinity binding sites was 54.7 μmol/l. The performance of the MIP throughout the clean-up of spiked maize, barley and oat sample extracts was compared with the results obtained when using non-imprinted polymer, OASIS HLB® and immunoaffinity columns (IAC). Depending on the food matrix and the spiked concentration, recoveries after MISPE and non-imprinted solid-phase extraction varied respectively from 60% to 73% and from 21% to 57%. Recoveries obtained after clean-up using OASIS HLB® and IAC were in the range of 74–104% and 60–85%, respectively. Although highest recoveries were obtained with OASIS HLB® sorbents, the designed MIP and the IAC were superior regarding selectivity, cross-reactivity, matrix effect, limits of detection (LOD) and limits of quantification (LOQ). Depending on the matrix, LOD after MISPE ranged from 0.4 μg/kg to 0.6 μg/kg and LOQ from 1.4 μg/kg to 1.9 μg/kg. LOD and LOQ after OASIS HLB® clean-up varied from 0.9 μg/kg to 3.5 μg/kg and from 3.1 μg/kg to 11.7 μg/kg, respectively. The LOD and LOQ values obtained with IAC were in the range of 0.3–2.3 μg/kg and 1.0–7.7 μg/kg, respectively. Analysis of 39 naturally contaminated samples (maize, barley and oat) by liquid chromatography tandem mass spectrometry revealed that the MIP could be an excellent alternative for clean-up of contaminated food samples.
Keywords:Molecularly imprinted polymer   T-2 toxin   Solid-phase extraction   Mycotoxins   Molecular recognition   Food
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号