首页 | 本学科首页   官方微博 | 高级检索  
     

大气压低温氦等离子体射流的诊断研究
引用本文:宋鹏,李政楷,陈雷,王晓放,隆武强,曾文. 大气压低温氦等离子体射流的诊断研究[J]. 光谱学与光谱分析, 2021, 41(6): 1874-1879. DOI: 10.3964/j.issn.1000-0593(2021)06-1874-06
作者姓名:宋鹏  李政楷  陈雷  王晓放  隆武强  曾文
作者单位:大连理工大学能源与动力学院,辽宁 大连 116024;大连民族大学机电工程学院,辽宁 大连 116605;沈阳航空航天大学航空发动机学院,辽宁 沈阳 110136;大连理工大学能源与动力学院,辽宁 大连 116024
基金项目:国家自然科学基金项目(51509035),中国航空动力基金项目(6141B090540)、辽宁省教育厅基础研究项目(JYT19059)资助
摘    要:为了加快低温氦气等离子体射流的工程化进程,通过自主设计的同轴式介质阻挡放电等离子体射流发生器,在放电频率10 kHz,一个大气压条件下产生了稳定的氦气等离子体射流.通过分析不同工况下的电压电流波形可以发现单纯增加氦气体积流量只能小幅的增加电流脉冲幅值,而对放电时间、电流脉冲数的影响不大.增加放电峰值电压时电流脉冲幅值会...

关 键 词:大气压  氦气介质阻挡放电  发射光谱法  电子激发温度  电子密度
收稿时间:2020-06-18

Diagnosis of Atmospheric Pressure Helium Cryogenic Plasma Jet
SONG Peng,LI Zheng-kai,CHEN Lei,WANG Xiao-fang,LONG Wu-qiang,ZENG Wen. Diagnosis of Atmospheric Pressure Helium Cryogenic Plasma Jet[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1874-1879. DOI: 10.3964/j.issn.1000-0593(2021)06-1874-06
Authors:SONG Peng  LI Zheng-kai  CHEN Lei  WANG Xiao-fang  LONG Wu-qiang  ZENG Wen
Affiliation:1. School of Energy and Power, Dalian University of Technology, Dalian 116024, China2. Aerospace Engineering Institute, Shenyang Aerospace University, Shenyang 110136, China3. School of Mechanical and Electrical Engineering, Dalian University for Nationalities, Dalian 116605, China
Abstract:In order to accelerate the process of helium plasma jet’s engineering,a stable helium plasma jet was produced in the atmosphere through a self-designed coaxial Dielectric Barrier Discharge structure with a discharge frequency of 10 kHz. By analyzing the voltage and current waveform under different working conditions, it can be found that simply increasing the volume flow of helium gas can only increase the current pulse slightly, but has little effect on the discharge time and the number of current pulses. However, when the peak discharge voltage is increased, the current pulse amplitude increases significantly. The types of active particles, electron excitation temperature and electron density of atmospheric pressure helium plasma jet were diagnosed by emission spectroscopy. The results show that the main active particles of helium plasma jet are He I atom, N2 second positive band system, N+2 first negative band system, hydroxyl (OH), H atom Balmer line system (Hα, Hβ) and O atom. It shows that although the purity of the helium gas used in this test has reached 99.99%, there is still a small amount of air remaining. At the same time, the air in the atmosphere will be sucked into the discharge space and be ionized. It can be found that the relative spectral intensity of the main active particles showed an upward trend with the increase of the volume flow of helium gas and the increase of the peak discharge voltage. The electronic excitation temperature under different test conditions was calculated by the Boltzmann slope method between 3 500 to 6 300 K. With the increase of the discharge peak voltage and helium gas’s volume flow rate, the electron excitation temperature basically shows a rising trend. However, due to the presence of a reverse electric field, the electronic excitation temperature may show a downward trend at some certain peak voltages; According to the Stark broadening principle, the electron density of the atmospheric pressure helium plasma jet was calculated, and it is found that the electron density can reach the order of 1015 cm-3 while increasing the peak voltage and helium volume flow can effectively increase the electron density in the plasma jet. The study of these parameters is of great significance for the application of helium plasma jets.
Keywords:Atmospheric pressure  Heliumdielectric barrier discharge  Emission spectroscopy  Electron excitation temperature  Electron density  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号