首页 | 本学科首页   官方微博 | 高级检索  
     

高光谱数据的刚竹毒蛾虫害程度检测
引用本文:郑蓓君,陈芸芝,李凯,汪小钦,许章华,黄旭影,胡新宇. 高光谱数据的刚竹毒蛾虫害程度检测[J]. 光谱学与光谱分析, 2021, 41(10): 3200-3207. DOI: 10.3964/j.issn.1000-0593(2021)10-3200-08
作者姓名:郑蓓君  陈芸芝  李凯  汪小钦  许章华  黄旭影  胡新宇
作者单位:福州大学空间数据挖掘与信息共享教育部重点实验室 ,福建 福州 350108;卫星空间信息技术综合应用国家地方联合工程研究中心 ,福建 福州 350108;数字中国研究院(福建) ,福建 福州 350108;福州大学空间数据挖掘与信息共享教育部重点实验室 ,福建 福州 350108;卫星空间信息技术综合应用国家地方联合工程研究中心 ,福建 福州 350108;福州大学环境与安全工程学院 ,福建 福州 350108;南京大学国际地球系统科学研究所 ,江苏 南京 210093;福州大学环境与安全工程学院 ,福建 福州 350108
基金项目:国家重点研发计划课题(2017YFB0504203),中央引导地方科技发展专项(2017L3012),中国博士后基金面上项目(2018M630728),3S技术与资源优化利用福建省高校重点实验室开放课题(fafugeo201901)资助
摘    要:刚竹毒蛾虫害检测对毛竹的生长和竹业的发展起着至关重要的作用.根据高光谱冠层光谱信息与刚竹毒蛾虫害程度之间的关系,提取冠层光谱中与虫害紧密相关的特征波长、指数以及光谱参数等,利用Fisher判别分析法建立刚竹毒蛾虫害程度检测模型.分别以原始光谱的400~508,586~693和724~900 nm处的波长、包络线去除光谱...

关 键 词:刚竹毒蛾  高光谱  冠层光谱  Fisher判别分析
收稿时间:2020-10-07

Detection of Pest Degree of Phyllostachys Chinese With Hyperspectral Data
ZHENG Bei-jun,CHEN Yun-zhi,LI Kai,WANG Xiao-qin,XU Zhang-hua,HUANG Xu-ying,HU Xin-yu. Detection of Pest Degree of Phyllostachys Chinese With Hyperspectral Data[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3200-3207. DOI: 10.3964/j.issn.1000-0593(2021)10-3200-08
Authors:ZHENG Bei-jun  CHEN Yun-zhi  LI Kai  WANG Xiao-qin  XU Zhang-hua  HUANG Xu-ying  HU Xin-yu
Abstract:The detection of insect pests of Phyllostachys edulis plays a vital role in the growth of bamboo and the development of the bamboo industry. Based on the relationship between the hyperspectral canopy spectrum information and the pest degree of Phyllostachys edulis, the characteristic wavelengths, indices, and spectral parameters closely related to the pests in the canopy spectrum were extracted, and Fisher’s discriminant analysis method was used to establish Phyllostachys edulis Pest degree detection model. Here are the wavelengths at 400~508, 586~693, 724~900 nm of the original spectrum, and the envelope curve to remove the characteristic wavelengths between 400~756 nm of the spectrum, 9 of canopy spectrum vegetation indices and 7 characteristic spectral parameters of the canopy are used as independent variables of the Fisher discriminant function to construct the discriminant function. Collected 300 groups of Phyllostachys pubescens leaf pest sample data, and randomly divided them into 210 modeling sets and 90 verification sets. According to the detection accuracy, Kappa coefficient and determination coefficient R2 as the test standards, the effect of the established discriminant function is evaluated and compared. The results show that the inspection accuracy of the Fisher discriminant function established by the original spectrum, de-envelope spectrum, canopy index, and spectral parameters as independent variables are 84.4%, 81.1%, 79.7%, 78.7%, respectively. The inspection accuracy of Kappa coefficient is 0.79, 0.74, 0.74, 0.76, and R2 is: 0.89, 0.88, 0.88, 0.85, respectively. It can be seen that the function established by the Fisher discriminant analysis model has a good ability to detect the degree of pests of the Phyllostachys edulis, and the discriminant function established based on the original spectrum of the canopy has the best detection effect. The discriminant function established based on the original spectrum of the canopy of the hyperspectral data was used to detect the pest degree of Phyllostachys edulis in Yangmen and Tulong Village in Wufang Village, Dagan Town, Shunchang County, Fujian Province. The test result is that the bamboo forests in the two sample areas of Shanghu are mainly healthy, and the pest degree of the two sample areas of Yangmen is mainly moderate and severe. Therefore, based on UAV hyperspectral remote sensing, it is feasible for large-area detection of Phyllostachys edulis pests. The method and results can provide a reference for the exploration of pest detection and contribute theoretical support for pest detection based on canopy remote sensing.
Keywords:Phyllostachys edulis  Hyperspectral  Canopy spectrum  Fisher discriminant analysis  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号