首页 | 本学科首页   官方微博 | 高级检索  
     

Na2CO3的高压拉曼光谱研究
作者单位:1. 中国地震局地震预测研究所,北京 100036
2. 中国工程物理研究院流体物理研究所,四川 绵阳 621900
3. 防灾科技学院,河北 三河 065201
4. 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京 100029
5. School of Earth Sciences, University of Bristol, Bristol BS81RJ, United Kingdom
6. 中国工程物理研究院核物理与化学研究所,四川 绵阳 621999
基金项目:高压物理与地震科技联合实验室开放基金课题(2019HPPES07,2019HPPES06,2019HPPES08),国家自然科学基金青年科学基金项目(41902035),国家自然科学基金项目(41573121;91958216),中国博士后科学基金资项目(2018M640179,2019T120132),中国地震局地震预测研究所基本科研业务经费(2019IEF0502)资助
摘    要:碳酸盐是碳在地球内部的重要载体之一,其在地幔高温高压条件下的晶体化学是理解地球深部碳的赋存状态和循环过程的关键,而结构稳定性和相变是晶体化学最基本的研究内容。碳酸钠(Na2CO3)是一种常见的碱性碳酸盐矿物,在产自地幔过渡带-下地幔的金刚石中已发现含钠的碳酸盐矿物包裹体,这成为碳酸钠能够俯冲进入地幔深部的直接矿物学证据。前人利用拉曼光谱技术研究了Na2CO3在常温常压下的晶格振动模式,但其在高压下的稳定性和结构变化却鲜有报道。利用金刚石压腔装置结合先进的共聚焦拉曼光谱技术,以硅油作为传压介质,在准静水压力条件下,在0.001~27.53 GPa压力区间对Na2CO3粉末在600~1 200 cm-1波段的振动特征进行了细致地分析。本次实验重点分析了[CO3]2-基团振动模式在升压和卸压过程中的行为。结果表明,在0.001~11.88 GPa压力范围内,[CO3]2-基团对称伸缩振动γ1(1 088.06和1 070.76 cm-1)、反对称伸缩振动γ3(865.10和797.50 cm-1)和面内弯曲振动γ4(720.10和696.71 cm-1)都出现了振动峰的分裂。随着压力增加,所有振动峰都向高频率漂移,半高宽也逐渐增加。在13.40 GPa时,Na2CO3发生结构相变,具体表现为690.08 cm-1处出现1条新的拉曼峰,并且随着压力升高该峰的强度逐渐增大。同时反对称伸缩振动峰γ3以及面内弯曲振动峰γ4的强度持续减弱,半高宽也继续变大。这些现象表明Na2CO3结构相变源于[CO3]2-内部晶格变化。当压力卸载到4.18 GPa时,[CO3]2-的振动模式与常温常压下的完全吻合,相变出现的新峰也已经消失,表明该相变是由[CO3]2-基团畸变引起的并且具有可逆性。继续升压至27.53 GPa,拉曼光谱继续蓝移,Na2CO3的拉曼谱线再没有变化,说明高压相在这一压强范围内保持稳定。在整个加压过程中,反对称伸缩振动γ3和面内弯曲振动γ4处的拉曼峰出现强度减弱现象。同时也计算了各个峰频率对压力的依赖系数dγ/dP,结果显示[CO3]2-基团内各个振动模式对压力的响应是不同的,这很可能与C-O键的键长有关。最后,对比发现,对称伸缩振动γ1峰的强度比反对称伸缩振动γ3和面内弯曲振动γ4峰的强度大,并且[CO3]2-基团对称伸缩振动γ1受压力影响相对较小,可以用来区别不同种类的碳酸盐矿物。

关 键 词:碳酸钠  拉曼散射  高压  相变  
收稿时间:2020-07-16

High Pressure Raman Spectrum Study of Na2CO3
XU Chao-wen,GAO Jing,LI Ying,QIN Fei,LIU Hong,YI Li,CUI Yue-ju,SUN Feng-xia,FANG Lei-ming. High Pressure Raman Spectrum Study of Na2CO3[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2087-2091. DOI: 10.3964/j.issn.1000-0593(2021)07-2087-05
Authors:XU Chao-wen  GAO Jing  LI Ying  QIN Fei  LIU Hong  YI Li  CUI Yue-ju  SUN Feng-xia  FANG Lei-ming
Abstract:Carbonate is one of the important carriers of carbon in the earth’s interior. Therefore, its crystal chemistry under the condition of temperature and pressure corresponding to the mantle is the key to understand the carbon occurrence state and cycle process of deep earth, but structural stability and phase transition are the basic research contents of crystal chemistry. Na2CO3 is a common alkaline carbonate, which enters the earth’s interior by subduction of oceanic crust. The existence of sodium carbonate in the subducted slab can significantly reduce the melting temperature of peridotite, promote partial melting and induce mantle heterogeneity. The inclusions of sodium carbonates have been found in the diamonds from the mantle transition zone and the lower mantle, providing direct mineralogical evidence that sodium carbonate can deeply subductin to the deep mantle. The lattice vibration modes of Na2CO3 at ambient condition were reported previously by Raman spectroscopy, but its stability and structural changes under high pressure are poorly reported. In this study, we used silicone oil as pressure transmitting medium and the Raman spectrum of Na2CO3 powder have been carefully ascertained in the pressure range of 0.001~27.53 GPa and the wavelength range of 600~1 200 cm-1 using diamond anvil cell combined with advanced confocal Raman spectroscopy. This experiment focused on the analysis of the behavior of [CO3]2- group vibration mode in the process of compression and decompression. The results showed that splitting of vibration peaks respectively appeared in symmetric stretching vibration γ1, antisymmetric stretching vibration γ3 and the in-plane bending vibration γ4 of the [CO3]2- at the pressure range of 0.001~11.88 GPa. With the increase of pressure, all peaks shift to high frequency, and the full width at half maximum (FWHM) increases gradually. The phase transition occurred at 13.40 GPa, accompanied by a new Raman peak at 690.08 cm-1 and the intensity of the peak increases with the increase of pressure. At the same time, the intensity of antisymmetric stretching vibration and in-plane bending vibration continued to weaken, and the FWHM of Na2CO3 also continued to increase, indicating that the phase transition of Na2CO3 originates from the internal lattice vibration of [CO3]2-. When the pressure is decompressed to 4.18 GPa, it is found that the vibration mode of [CO3]2- is identical with that at ambient condition, and the new peak has disappeared, indicating that the phase transition is caused by the distortion of [CO3]2- group and is recoverable. The Raman peaks continued shifting to high frequencies when the pressure increased to 27.53 GPa, suggesting this new phase can remain stable in this pressure range. The intensity of Raman peaks at the antisymmetric stretching vibration γ3 and in-plane bending vibration γ4 decreased during compression. Meanwhile, the calculated dependence coefficient of relative pressure-shift of each Raman peak showed that the response of each vibration mode to pressure is different in [CO3]2-. This is probably related to the length of the C-O bond. Finally, by comparison, the intensity of symmetric stretching vibration γ1 peak is higher than that of antisymmetric stretching vibration γ3 and in-plane bending vibration γ4. The pressure also has little effect on the typical Raman peak γ1 of [CO3]2-, and therefore can be used to distinguish different kinds of carbonates.
Keywords:Sodium carbonate  Raman scattering  High pressure  Phase transition  
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号