首页 | 本学科首页   官方微博 | 高级检索  
     检索      

砷和砷酸铁水化结构和红外光谱理论研究
作者单位:郑州师范学院化学化工学院,河南 郑州 450044;郑州大学河南先进技术研究院,河南 郑州 450003;长江勘测规划设计研究院,湖北 武汉 430010
基金项目:国家自然科学基金项目(21908203), 中国博士后科学基金特别项目(2019T120637), 河南省科技攻关项目(202102310592), 河南省高等学校重点科研项目(20A150045)资助
摘    要:水体中砷的去除与其水化作用密切相关,而不同质子化砷和砷酸铁水化特征相关报道甚少,且缺乏不同质子化砷和砷酸铁水化层红外光谱解析。在B3LYP/6-311G(d, p)计算水平上比较不同质子化砷酸根HmAsO4]m-3(m=0~2)和铁-砷酸盐络合物种FeHmAsO4]m+(m=0-2)水化能,利用约化密度梯度函数图形化分析其与水分子相互作用的强度、类型和位置,并解析不同质子化砷酸根和砷酸铁水化层红外光谱特征。结果表明,随着氢质子化,砷酸根HmAsO4]m-3(m=0~2)水化能力减弱,而铁-砷酸盐络合物种FeHmAsO4]m+(m=0~2)水化能力随着氢质子化增强。当水分子中1个氢与HmAsO4]m-3(m=0~2)中1个氧相互作用时倾向形成氢键;而水分子中2个氢同时分别与HmAsO4]m-3(m=0~2)中两个氧相互作用时,相互作用变弱,以范德华力相互作用;水分子通过其氢与砷酸根中氧形成的氢键强于水分子通过其氧与质子化砷酸根中氢形成的氢键。未质子化ON倾向与2~4个水分子形成氢键,而质子化OP最多与2个水分子形成氢键且OP…HW氢键弱于ON…HW氢键。红外光谱中,2 954,3 114,3 179,3 252和3 297 cm-1是AsO3-4第一水化层中水分子Ow-Hw伸缩振动峰,3 277,3 324和3 376 cm-1是HAsO2-4第一水化层中水分子的Ow-Hw伸缩振动峰,3 189,3 277,3 306和3 383 cm-1是H2AsO-4第一水化层中水分子Ow-Hw伸缩振动峰;FeHmAsO4]m+(m=0~2)第一水化层中水分子Ow-Hw伸缩振动对应区域依次是2 500~3 060,2 660~3 200和2 900~3 360 cm-1。因此,随质子化,HmAsO4]m-3(m=0~2)和FeHmAsO4]m+(m=0~2)第一水化层中水分子的Ow-Hw伸缩振动峰蓝移;相对于HmAsO4]m-3(m=0~2),FeHmAsO4]m+(m=0~2)第一水化层水分子的弯曲振动峰和伸缩振动峰都明显红移。FeHmAsO4]m+(m=0~2)第一水壳层形成Fe-Ow-Hw…Ow-Hw…ON-As氢键桥,该氢键桥中Ow-Hw具有特殊吸收峰,伸缩振动峰依次位于2 195,2 526和2 673 cm-1,质子化导致明显蓝移但峰强度几乎无变化;而其弯曲振动峰随质子化红移且强度明显降低;独立OP-H伸缩振动峰不受Fe络合影响,而OP-H…Ow中OP-H伸缩振动峰位置因Fe络合而发生明显蓝移。该研究有助于更好地解析不同PH下砷和砷酸铁在水中溶解性,可用于红外光谱监测水溶液中砷和砷酸铁水化特征。

关 键 词:  砷酸铁  水化结构  水化层红外光谱
收稿时间:2020-07-15

Theoretical Study on the Structures and IR Spectra of Hydration of Arsenates and Iron Arsenates
Authors:LI Hui-ji  SUN Hai-jie  LIU Na  PENG Zhi-kun  LI Yong-yu  YAN Dan
Institution:1. School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China 2. Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China 3. Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
Abstract:The removal of arsenate in water is closely related to its hydration, but there are few reports on the hydration characteristics of different protonated arsenates and iron arsenates, and there is no correlation analysis on infrared spectra of hydration layers of protonated arsenates and iron arsenates. The hydration energies of different protonated arsenates HmAsO4]m-3(m=0~2) and iron arsenates FeHmAsO4]m+(m=0~2) were compared at B3LYP/6-311G(d, p) level. Reduced density gradient functions conducted graphical analyses for the intensities, types and locations of the interaction between water molecules with HmAsO4]m-3(m=0~2) and FeHmAsO4]m+(m=0~2). And, the characteristics of infrared spectra of the hydration layers of different protonated arsenates and iron arsenates were analyzed. The results show that the hydration of HmAsO4]m-3(m=0~2) gradually decreases with hydrogen protonation, while the protonation enhances the hydration of FeHmAsO4]m+(m=0~2). Hydrogen bonds tend to form when a water molecule hydrogen interacts with an oxygen of HmAsO4]m-3(m=0~2). However, when two hydrogens of water molecules simultaneously interact with two oxygens of HmAsO4]m-3(m=0~2), the interaction becomes weaker, and the van der Waals force appears. The hydrogen bond formed by water molecules through hydrogen with the oxygen of arsenates is stronger than the hydrogen bond formed by water molecules through oxygen with the hydrogen of protonated arsenates. The unprotonated ON tends to form hydrogen bonds with 2~4 water molecules, while the protonated OP forms hydrogen bonds with at most 2 water molecules, and the OP…HW hydrogen bond is weaker than the ON…HW hydrogen bond. In the infrared spectra, 2 954, 3 114, 3 179, 3 252 and 3 297 cm-1 is the stretching vibration peaks of Ow-Hw in the first hydration shell of AsO3-4; 3 277, 3 324 and 3 376 cm-1 is the stretching vibration peaks of Ow-Hw in the first hydration shell of HAsO2-4; 3 189, 3 277, 3 306 and 3 383 cm-1 is the stretching vibration peaks of Ow-Hw in the first hydration shell of H2AsO-4. The stretching vibration regions for Ow-Hw in the first hydration shell of FeHmAsO4]m+(m=0~2) are 2 500~3 060, 2 660~3 200, 2 900~3 360 cm-1. Therefore, the stretching vibration regions for the first hydration waters of HmAsO4]m-3(m=0~2) and FeHmAsO4]m+(m=0~2) have blue shifts with protonation. Compared with HmAsO4]m-3(m=0~2), the water molecules in the first hydration layers of FeHmAsO4]m+(m=0~2) exhibit a significantly red shift of the bending vibration peaks and stretching vibration peaks in the infrared spectra. The hydrogen bond bridge Fe-Ow-Hw…Ow-Hw…ON-As is formed in the first hydration shell of FeHmAsO4]m+(m=0~2). The Ow-Hw in this hydrogen bond bridge has a special absorption peak, such as the stretching vibration peak located in 2 195, 2 526 and 2 673 cm-1, respectively. Its stretching vibration peak is significantly blue-shifted, but the peak strength is almost unchanged, while its bending vibration peak is red-shifted with the protonation and the strength is significantly reduced. The stretching vibration peak of independent OP-H is not affected by the complexation of Fe, while the position of stretching vibration peak for OP-H in OP-H…Ow is significantly blue shifted, due to the complexation of Fe. This study is helpful to understand better the solubility of arsenates and iron arsenates in water at different pH.
Keywords:Arsenate  Iron arsenate  Hydration structures  Infrared spectrum of hydration layers  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号