首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterizing challenging microcrystalline solids with solid-state NMR shift tensor and synchrotron X-ray powder diffraction data: structural analysis of ambuic acid
Authors:Harper James K  Grant David M  Zhang Yuegang  Lee Peter L  Von Dreele Robert
Institution:Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
Abstract:Synchrotron X-ray powder diffraction and solid-state (13)C NMR shift tensor data are combined to provide a unique path to structure in microcrystalline organic solids. Analysis is demonstrated on ambuic acid powder, a widely occurring natural product, to provide the complete crystal structure. The NMR data verify phase purity, specify one molecule per asymmetric unit, and provide an initial structural model including relative stereochemistry and molecular conformation. A refinement of X-ray data from the initial model establishes that ambuic acid crystallizes in the P2(1) space group with unit cell parameters a = 15.5047(7), b = 4.3904(2), and c = 14.1933(4) A and beta = 110.3134(3) degrees . This combined analysis yields structural improvements at two dihedral angles over prior NMR predictions with differences of 103 degrees and 37 degrees found. Only minor differences of +/-5.5 degrees , on average, are observed at all remaining dihedral angles. Predicted hydroxyl hydrogen-bonding orientations also fit NMR predictions within +/-6.9 degrees . This refinement corrects chemical shift assignments at two carbons and reduces the NMR error by approximately 16%. This work demonstrates that the combination of long-range order information from synchrotron powder diffraction data together with the accurate shorter range structure given by solid-state NMR measurements is a powerful tool for studying challenging organic solids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号