首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inflation and burst of aluminum tubes. Part II: An advanced yield function including deformation-induced anisotropy
Authors:Yannis P Korkolis  Stelios Kyriakides
Institution:Research Center for Mechanics of Solids, Structures and Materials, WRW 110, C0600, The University of Texas at Austin, WRW 110, Austin, TX 78712, United States
Abstract:In a recent study Korkolis, Y.P., Kyriakides, S., 2008. Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int’l. J. Plasticity 24, 509–543], the formability of aluminum tubes was investigated using a combination of experimental and numerical approaches. The tubes were loaded to failure under combined internal pressure and axial load along radial paths in the engineering stress space. The experiments were then simulated using appropriate FE models and two established anisotropic yield functions. It was found that for some loading paths the computed deformations did not agree with the experimental ones, whereas rupture was generally overpredicted. In the current study the problem is tackled using a more advanced yield function Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E., 2003. Plane stress function for aluminum alloy sheets – part I: theory. Int’l. J. Plasticity 19, 1297–1319]. Three different calibration schemes of this function are employed, in two of which the experimentally observed deformation-induced anisotropy is taken into account. It is demonstrated that both deformation and failure can ultimately be predicted successfully, albeit arduously, using a hybrid procedure detailed herein.
Keywords:Aluminum  Tube hydroforming  Burst  Deformation-induced anisotropy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号