首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method
Authors:HW Li  H YangZC Sun
Institution:College of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an 710072, China
Abstract:Severe numerical instability in the integration of rate dependent crystal plasticity (RDCP) model is one of the main problems for implementing RDCP into finite element method (FEM), especially for simulating dynamic/transient forming process containing complicated contact conditions under large step length, large strain and high strain rate. In order to overcome the problem, an implicit model is deduced with the primary unknowns of shear strain increments of slip systems under the corotational coordinate system in the paper. The homotopy auto-changing continuation method combined with the Newton–Raphson (N–R) iteration is adopted. The subroutine VUMAT is developed for implementing RDCP model in ABAQUS/Explicit. Simulation results show that the algorithm is stable and accurate in 3D FE simulations on both dynamic simple loading and complicated loading process containing nonlinear contacts under the conditions of the maximal step length of 3.5 × 10−6 s, the maximal strain of 1.05, the maximal loading speed of 120 mm s−1, and the minimal material rate sensitivity coefficient of 0.01. The predictions of the model on crystal behaviors of anisotropy, rate sensitivity and elasticity, as well as ear profiles in deep cup drawing are in agreement with experiments.
Keywords:Crystal plasticity  Homotopy continuation method  Integration algorithm  Explicit FEM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号