首页 | 本学科首页   官方微博 | 高级检索  
     


Electro-optical characterization and analysis of CuPc-based solar cells with high photovoltage
Authors:V P Singh  R S Singh  A M Hermann
Affiliation:(1) Electrical and Computer Engineering Department and Center for Nanoscale Science and Engineering, University of Kentucky, 40506 Lexington, KY, USA
Abstract:Organic solar cells using the CuPc and PTCBI semiconductor layers were studied. A high open circuit voltage of 1.15 V was obtained in a device with ITO/PEDOT:PSS/CuPc (15 nm)/PTCBI (7 nm)/Al structure. Results were interpreted in terms of a modified CuPc-Al Schottky diode for the thin PTCBI case and a CuPc-PTCBI heterojunction for the thick PTCBI case. Also, the formation of a thin aluminum oxide layer under the aluminum electrode was postulated. This layer has a beneficial aspect wherein shunting losses are reduced and a high photovoltage is enabled. However, it adds greatly to the series resistance to a point where the short circuit current density is reduced. CuPc Schottky diodes with an ITO/PEDOT:PSS/CuPc/Al structure yielded a high V oc of 900 mV for a CuPc layer of thickness 140 nm. The V oc increased with increase in CuPc layer thickness.
Keywords:Organic semiconductors  photovoltaics  heterojunctions  Schottky diodes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号