首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling and prediction of bulk properties of open-cell carbon foam
Authors:Sangwook Sihn  Ajit K Roy
Institution:a University of Dayton Research Institute, Nonmetallic Division, 300 College Park, Dayton, OH 45469-0168, USA
b Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLBC, 2941 P St Rm. 136, WPAFB, OH 45433-7750, USA
Abstract:The emerging ultralightweight material, carbon foam, was modeled with three-dimensional microstructures to develop a basic understanding in correlating microstructural configuration with bulk performance of open-cell foam materials. Because of the randomness and complexity of the microstructure of the carbon foam, representative cell ligaments were first characterized in detail at the microstructural level. The salient microstructural characteristics (or properties) were then correlated with the bulk properties through the present model. In order to implement the varying anisotropic nature of material properties in the foam ligaments, we made an attempt to use a finite element method to implement such variation along the ligaments as well as at a nodal point where the ligaments meet. The model was expected to provide a basis for establishing a process-property relationship and optimizing foam properties.The present model yielded a fairly reasonable prediction of the effective bulk properties of the foams. We observed that the effective elastic properties of the foams were dominated by the bending mode associated with shear deformation. The effective Young's modulus of the foam was strongly influenced by the ligament moduli, but was not influenced by the ligament Poisson's ratio. The effective Poisson's ratio of the foam was practically independent of the ligament Young's modulus, but dependent on the ligament Poisson's ratio. The effective Young's modulus of the carbon foam was dependent more on the transverse Young's modulus and the shear moduli of the foam ligaments, but less significantly on the ligament longitudinal Young's modulus. A parametric study indicated that the effective Young's modulus was significantly improved by increasing the solid modulus in the middle of the foam ligaments, but nearly invariant with that at the nodal point where the ligaments meet. Therefore, appropriate processing schemes toward improving the transverse and shear properties of the foam ligaments in the middle section of the ligaments rather than at the nodal points are highly desirable for enhancing the bulk moduli of the carbon foam.
Keywords:Open cell  Carbon foam  Effective bulk property  Microstructure  Finite element analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号