首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cyanovinyl radical: an illustration of the poor performance of unrestricted perturbation theory and density functional theory procedures in calculating radical stabilization energies
Authors:Christopher J Parkinson  Paul M Mayer  Leo Radom
Institution:(1) Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, AU
Abstract:Stabilization energies for the 1-cyanovinyl radical (CH2=CCN) have been calculated using a variety of conventional ab initio (M?ller–Plesset, quadratic configuration interaction and coupled-cluster) and density functional theory (B-LYP, B3-LYP) procedures, as well as with a range of compound methods. Compared with a high-level benchmark value (that predicts a stabilization energy of 17.1 kJ mol−1), UMP2 and UMP4 give the wrong sign and magnitude of the stabilization energy (both methods predicting desta- bilization instead of stabilization), while B-LYP and B3-LYP overestimate the degree of stabilization. The RMP2, RMP4, QCISD(T) and CCSD(T) techniques, and several, but not all, variants of G2 and CBS theories give radical stabilization energies in good agreement with the benchmark value. Received: 15 June 1998 / Accepted: 19 August 1998 /  Published online: 15 February 1999
Keywords:: Radical stabilization energy  Spin contamination  Unrestricted perturbation theory  Density functional theory
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号