首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ionic conductivity and activation energy for oxygen ion transport in superlattices--the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3
Authors:Korte C  Peters A  Janek J  Hesse D  Zakharov N
Institution:Physikalisch-Chemisches Institut, Justus-Liebig-Universit?t Giessen, Heinrich-Buff-Ring 58, Giessen, Germany. korte@phys.chemie.uni-giessen.de
Abstract:The oxygen ion conductivity of YSZ (ZrO(2) + 9.5 mol% Y(2)O(3))/Y(2)O(3) multilayer systems is measured parallel to the interfaces as a function of temperature between 350 and 700 degrees C. The multilayer samples are prepared by pulsed laser deposition (PLD). The film thicknesses, the crystallinity, the texture and the microstructure are investigated by SEM, XRD, HRTEM and SAED. To separate the interface contribution of the total conductivity from the bulk contribution the thickness of the YSZ and Y(2)O(3) layers is varied systematically. The total conductivity of the YSZ films increases when their thickness is decreased from 0.53 microm to 24 nm. It depends linearly on the reciprocal thickness of the individual layers, thus on the number of YSZ/Y(2)O(3) interfaces. This behaviour results from the parallel connection between individual conduction paths in the bulk and the interfacial regions. The activation energy for the ionic conductivity decreases from 1.13 to 0.99 kJ mol(-1) by decreasing the thicknesses of the individual YSZ layers. HRTEM studies show that the YSZ/Y(2)O(3) interfaces are semicoherent. The correlation between interface structure and ionic conduction is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号