首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water
Authors:Mai Luo  Donghui LiuLu Zhao  Jiajun HanYiran Liang  Peng WangZhiqiang Zhou
Institution:Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing 100193, PR China
Abstract:A reliable, sensitive, rapid and environmentally friendly analysis procedure for the simultaneous determination of the analytes with a wide range of polarity in the environmental water was developed by coupling dispersive magnetic solid-phase extraction (d-MSPE) with high-performance liquid chromatography (HPLC)–diode array detector (DAD) and ultra-high pressure liquid chromatography (UHPLC)-triple quadrupole mass spectrometer (MS/MS), in this work. Magnetic ionic liquid modified multi-walled carbon nanotubes (m-IL-MWCNTs) were prepared by spontaneous assembly of magnetic nanoparticles and imidazolium-modified carbon nanotubes, and used as the sorbent of d-MSPE to simultaneously extract aryloxyphenoxy-propionate herbicides (AOPPs) and their polar acid metabolites due to the excellent π–π electron donor–acceptor interactions and anion exchange ability. The factors, including the amount of sorbent, pH of the sample solution, extraction time and the volume of elution solvent were investigated. Under the optimized conditions, the proposed d-MSPE coupling to HPLC–DAD system had a satisfactory performance, the limits of detection (LODs, defined as the signal to noise ratio of 3) and the limits of quantification (LOQs, defined as the signal to noise ratio of 10) for analytes in Milli-Q water were in the range of 2.8–14.3 and 9.8–43.2 μg L−1 respectively. Calibration curves were linear (r2 > 0.998) over the concentration range from 0.02 to 1 mg L−1. The recoveries of the eight analytes ranged from 66.1 to 89.6% with the RSDs less than 8.6%. In order to extend the method in extremely low concentration analysis, d-MSPE-UHPLC–MS/MS was investigated, which showed better performance in terms of limit of detection and analysis time.
Keywords:Ionic liquid modified carbon nanotube  Dispersive magnetic solid-phase extraction  Aryloxyphenoxy-propionate herbicide  Metabolites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号