首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamical Modeling and Flatness Based Control of a Belt Drive System
Authors:Matthias Jörgl  Hubert Gattringer
Institution:Institute for Robotics, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria
Abstract:Belt driven systems are part of many industrial applications, like computerized numerical control (CNC) machines in particular cutting machines and 3D-printers. In this paper the dynamical modeling and a flatness based controller design for belt driven systems are proposed. Due to the special kinematics, the stiffness of the belt is nonlinear, leading to nonlinear equations of motion. By neglecting some minor dynamical effects, the resulting system simplifies to a differentially flat one. This allows to calculate nominal feed-forward control torques by using the flat output of the system. To stabilize the error dynamics, an additional PD control law is introduced. The proposed method is compared with a controller, where elastic deflections for the feed forward part are neglected and elastic deformations are compensated by modifying the desired trajectories in a model-based manner. The tracking performance of both methods is evaluated in certain simulations and experiments. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号