Actual activation energy of electrode process under mixed kinetics conditions |
| |
Authors: | F. I. Danilov V. S. Protsenko |
| |
Affiliation: | 1.Ukrainian State University of Chemical Technology,Dnepropetrovsk,Ukraine |
| |
Abstract: | In the case of a single-electron reaction with account for slow diffusion of reagents, equations for actual (experimentally determined) activation energies of two types were derived and analyzed: real energy A f, i.e., the energy measured at a constant electrode polarization value η = const) and formal energy (Ωf, i.e., the value measured at a constant value of potential vs. an ambiguously chosen reference electrode E = const). It is found that under the conditions of a sufficiently significant deviation from equilibrium, the actual activation energy A f is the weighted arithmetic mean of the diffusion activation energy and the sum of A 0 + αFη (where A 0 is the real activation energy of the discharge stage at polarization of η = 0); herewith, the weighting coefficients are the corresponding values of the current of the discharge stage and the limiting diffusion current. A similar relationship is also obtained for Ωf. It is found that the A f, η- and Ωf, E-curves can in a number of cases feature regions with the negative A f and Ωf values in the mixed kinetics range. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|