首页 | 本学科首页   官方微博 | 高级检索  
     


Actual activation energy of electrode process under mixed kinetics conditions
Authors:F. I. Danilov  V. S. Protsenko
Affiliation:1.Ukrainian State University of Chemical Technology,Dnepropetrovsk,Ukraine
Abstract:In the case of a single-electron reaction with account for slow diffusion of reagents, equations for actual (experimentally determined) activation energies of two types were derived and analyzed: real energy A f, i.e., the energy measured at a constant electrode polarization value η = const) and formal energy (Ωf, i.e., the value measured at a constant value of potential vs. an ambiguously chosen reference electrode E = const). It is found that under the conditions of a sufficiently significant deviation from equilibrium, the actual activation energy A f is the weighted arithmetic mean of the diffusion activation energy and the sum of A 0 + αFη (where A 0 is the real activation energy of the discharge stage at polarization of η = 0); herewith, the weighting coefficients are the corresponding values of the current of the discharge stage and the limiting diffusion current. A similar relationship is also obtained for Ωf. It is found that the A f, η- and Ωf, E-curves can in a number of cases feature regions with the negative A f and Ωf values in the mixed kinetics range.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号