首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Charge transfer in FeO: a combined molecular-dynamics and ab initio study
Authors:Kerisit Sebastien  Rosso Kevin M
Institution:Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA. sebastien.kerisit@pnl.gov
Abstract:Molecular-dynamics simulations and ab initio electronic structure calculations were carried out to determine the rate of charge transfer in stoichiometric wustite (FeO). The charge transfer of interest occurs by II/III valence interchange between nearest-neighbor Fe atoms, with the Fe(III) constituting a "hole" electronic defect. There are two possible nearest-neighbor charge transfers in the FeO lattice, which occur between edge-sharing or corner-sharing FeO(6) octahedra. Molecular-dynamics simulations predict charge-transfer rates of 3.7 x 10(11) and 1.9 x 10(9) s(-1) for the edge and corner transfers, respectively, in good agreement with those calculated using an ab initio cluster approach (1.6 x 10(11) and 8.0 x 10(8) s(-1), respectively). The calculated rates are also similar to those along the basal and c-axis directions in hematite (alpha-Fe(2)O(3)) determined previously. Therefore, as is the case for hematite, wustite is predicted to show anisotropic electrical conductivity. Our findings indicate that a rigid-ion model does not give acceptable results, thus showing the need to account for the change in polarizability of the system upon charge transfer. Our model achieves this by using a simple mechanical shell model. By calculating the electronic coupling matrix elements for many transition state configurations obtained from the molecular-dynamics simulations, we found evidence that the position of the bridging oxygen atoms can greatly affect the amount of electronic coupling between the donor and acceptor states. Finally, we address the effect of oxygen vacancies on the charge transfer. It was found that an oxygen vacancy not only creates a driving force for holes to transport away from the vacancy (or equivalently for electrons to diffuse toward the vacancy) but also lowers the free-energy barriers for charge transfer. In addition, the reorganization energy significantly differed from the nondefective case in a small radius around the defect.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号