首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stroke-Based Surface Reconstruction
Authors:Jooyoung Hahn  Jie Qiu  Eiji Sugisaki  Lei Jia  Xue-Cheng Tai &  Hock Soon Seah
Abstract:In this paper, we present a surface reconstruction via 2D strokes and a vector field on the strokes based on a two-step method. In the first step, from sparse strokes drawn by artists and a given vector field on the strokes, we propose a nonlinear vector interpolation combining total variation (TV) and $H^1$ regularization with a curl-free constraint for obtaining a dense vector field. In the second step, a height map is obtained by integrating the dense vector field in the first step. Jump discontinuities in surface and discontinuities of surface gradients can be well reconstructed without any surface distortion. We also provide a fast and efficient algorithm for solving the proposed functionals. Since vectors on the strokes are interpreted as a projection of surface gradients onto the plane, different types of strokes are easily devised to generate geometrically crucial structures such as ridge, valley, jump, bump, and dip on the surface. The stroke types help users to create a surface which they intuitively imagine from 2D strokes. We compare our results with conventional methods via many examples.
Keywords:Surface reconstruction from a sparse vector field  augmented Lagrangian method  two-step method  curl-free constraint  total variation regularization  preservation of discontinuities in  surface normal vectors  
点击此处可从《高等学校计算数学学报(英文版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号