首页 | 本学科首页   官方微博 | 高级检索  
     

应用高光谱成像技术鉴别绿茶品牌研究
引用本文:章海亮,李晓丽,朱逢乐,何勇. 应用高光谱成像技术鉴别绿茶品牌研究[J]. 光谱学与光谱分析, 2014, 34(5): 1373-1377. DOI: 10.3964/j.issn.1000-0593(2014)05-1373-05
作者姓名:章海亮  李晓丽  朱逢乐  何勇
作者单位:1. 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
2. 华东交通大学机电工程学院, 江西 南昌 330013
基金项目:国家“十二五”科技计划课题(2011BAD20B12), 国家高技术研究与发展项目(2011AA100705)和中央高校基本科研业务费专项资金资助
摘    要:应用高光谱成像技术,基于光谱主成分信息和图像信息的融合实现名优绿茶不同品牌的鉴别。首先采集6个品牌名优绿茶在380~1 023 nm波长范围的512幅光谱图像,然后提取并分析绿茶样本的可见近红外光谱响应特性,结合主成分分析法找到了最能体现这6类样本差异的2个特征波段(545和611 nm),并从这2个特征波段图像中分别提取12个灰度共生矩阵纹理特征参量包括中值、协方差、同质性、能量、对比度、相关、熵、逆差距、反差、差异性、二阶距和自相关,最后融合这12个纹理特征和三个主成分特征变量得到名优绿茶品牌识别的特征信息,利用LS-SVM建立区分模型,预测集识别率达到了100%,同时采用ROC曲线的评估方法来评估分类模型。结果表明综合应用灰度共生矩阵变量和光谱主成分变量作为LS-SVM模型输入可实现对绿茶品牌的鉴别。

关 键 词:灰度共生矩阵  绿茶  主成分分析  最小二乘支持向量机   
收稿时间:2013-07-11

Identification of Green Tea Brand Based on Hyperspectra Imaging Technology
ZHANG Hai-liang;LIU Xiao-li;ZHU Feng-le;HE Yong. Identification of Green Tea Brand Based on Hyperspectra Imaging Technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1373-1377. DOI: 10.3964/j.issn.1000-0593(2014)05-1373-05
Authors:ZHANG Hai-liang  LIU Xiao-li  ZHU Feng-le  HE Yong
Affiliation:1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China2. School of Mechanical Engineering, East China Jiaotong University, Nanchang 330013, China
Abstract:Hyperspectral imaging technology was developed to identify different brand famous green tea based on PCA information and image information fusion. First 512 spectral images of six brands of famous green tea in the 380~1 023 nm wavelength range were collected and principal component analysis (PCA) was performed with the goal of selecting two characteristic bands (545 and 611 nm) that could potentially be used for classification system. Then, 12 gray level co-occurrence matrix (GLCM) features (i.e., mean, covariance, homogeneity, energy, contrast, correlation, entropy, inverse gap, contrast, difference from the second-order and autocorrelation) based on the statistical moment were extracted from each characteristic band image. Finally, integration of the 12 texture features and three PCA spectral characteristics for each green tea sample were extracted as the input of LS-SVM. Experimental results showed that discriminating rate was 100% in the prediction set. The receiver operating characteristic curve (ROC) assessment methods were used to evaluate the LS-SVM classification algorithm. Overall results sufficiently demonstrate that hyperspectral imaging technology can be used to perform classification of green tea.
Keywords:GLCM  Green tea  PCA  LS-SVM
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号