首页 | 本学科首页   官方微博 | 高级检索  
     


A Cyclen-Functionalized Cobalt-Substituted Sandwich-Type Tungstoarsenate with Versatility in Removal of Methylene Blue and Anti-ROS-Sensitive Tumor Cells
Authors:Jiai Hua  Xueman Wei  Yifeng Li  Lingzhi Li  Hui Zhang  Feng Wang  Changli Zhang  Xiang Ma
Abstract:Oxidative degradation by using reactive oxygen species (ROS) is an effective method to treat pollutants. The synthesis of artificial oxidase for the degradation of dyes is a hot spot in molecular science. In this study, a nanoscale sandwich-type polyoxometalate (POM) on the basis of a tetra-nuclear cobalt cluster and trivacant B-α-Keggin-type tungstoarsenate {[Co(C8H20N4)]4}{Co4(H2O)2[HAsW9O34]2}∙4H2O (abbreviated as CAW, C8H20N4 = cyclen) has been synthesized and structurally examined by infrared (IR) spectrum, ultraviolet–visible (UV–Vis) spectrum, X-ray photoelectron spectrum (XPS), single-crystal X-ray diffraction (SXRD), and bond valence sum (Σs) calculation. According to the structural analysis, the principal element of the CAW is derived from modifying sandwich-type polyanion {Co4(H2O)2 [HAsW9O34]2}8 with four [Co(Cyclen)]2+, in which 1,4,7,10-tetraazacyclododecane (cyclen) is firstly applied to modify POM. It is also demonstrated that CAW is capable of efficiently catalyzing the production of ROS by the synergistic effects of POM fragments and Co–cyclen complexes. Moreover, CAW can interfere with the morphology and proliferation of sensitive cells by producing ROS and exhibits ability in specifically eliminating methylene blue (MB) dyes from the solution system by both adsorption and catalytic oxidation.
Keywords:sandwich-type arsenomolybdate   artificial oxidase   reactive oxygen species   methylene blue dyes   nanoscale catalyst
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号