首页 | 本学科首页   官方微博 | 高级检索  
     


Antioxidants of Amaranth,Quinoa and Buckwheat Wholemeals and Heat-Damage Development in Pseudocereal-Enriched Einkorn Water Biscuits
Authors:Lorenzo Estivi  Luisa Pellegrino  Johannes A. Hogenboom  Andrea Brandolini  Alyssa Hidalgo
Affiliation:1.Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;2.Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria–Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), Viale Piacenza 29, 26900 Lodi, Italy
Abstract:A viable approach to improve the nutritional quality of cereal-based foods is their enrichment with pseudocereals. The aim of this research was to evaluate the antioxidant properties of amaranth, quinoa and buckwheat, and the heat damage of water biscuits (WB) produced from either wholemeal or refined flour of einkorn and enriched with 50% buckwheat, amaranth or quinoa wholemeal. Buckwheat had the highest tocols content (86.2 mg/kg), and einkorn the most carotenoids (5.6 mg/kg). Conjugated phenolics concentration was highest in buckwheat (230.2 mg/kg) and quinoa (218.6 mg/kg), while bound phenolics content was greatest in einkorn (712.5 mg/kg) and bread wheat (675.7 mg/kg). The all-wholemeal WB had greater heat damage than those containing refined flour (furosine: 251.5 vs. 235.8 mg/100 g protein; glucosylisomaltol: 1.0 vs. 0.6 mg/kg DM; hydroxymethylfurfural: 4.3 vs. 2.8 mg/kg DM; furfural: 8.6 vs. 4.8 mg/kg DM). The 100% bread wheat and einkorn wholemeal WB showed greater heat damage than the WB with pseudocereals (furfural, 9.2 vs. 5.1 mg/kg; glucosylisomaltol 1.1 vs. 0.7 mg/kg). Despite a superior lysine loss, the amino-acid profile of the pseudocereals-enriched WB remained more balanced compared to that of the wheats WB.
Keywords:amino acids   carotenoids   colour   furosine   polyphenols   protein   tocols   pseudocereals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号