首页 | 本学科首页   官方微博 | 高级检索  
     


Honeycomb self-assembled peptide scaffolds by the breath figure method
Authors:Du Mingchun  Zhu Pengli  Yan Xuehai  Su Ying  Song Weixing  Li Junbai
Affiliation:Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint Lab, Key Lab of Colloid and Interface Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
Abstract:The self-assembly of molecules into desired architectures is currently a challenging subject for the development of supramolecular chemistry. Here we present a facile "breath figure" assembly process through the use of the self-assembled peptide building block diphenylalanine (L-Phe-L-Phe, FF). Macroporous honeycomb scaffolds were fabricated, and average pore size could be regulated, from (1.00±0.18) μm to (2.12±0.47) μm, through the use of different air speeds. It is indicated that the honeycomb formation is humidity-, solvent-, concentration-, and substrate-dependent. Moreover, water molecules introduced from "breath figure" intervene in the formation of hydrogen bonds during FF molecular self-assembly, which results in a hydrogen bond configuration transition from antiparallel β sheet to parallel β sheet. Meanwhile, as a result of the higher polarity of water molecules, the FF molecular array is transformed from laminar stacking into a hexagonal structure. These findings not only elucidate the FF molecule self-assembly process, but also strongly support the mechanism of breath figure array formation. Finally, human embryo skin fibroblast (ESF) culture experiments suggest that FF honeycomb scaffolds are an attractive biomaterial for growth of adherent cells with great potential applications in tissue engineering.
Keywords:breath figure  peptides  scaffolds  self‐assembly  supramolecular chemistry
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号