首页 | 本学科首页   官方微博 | 高级检索  
     


Green and Efficient Processing of Cinnamomum cassia Bark by Using Ionic Liquids: Extraction of Essential Oil and Construction of UV‐Resistant Composite Films from Residual Biomass
Abstract:There is significant interest in the development of a sustainable and integrated process for the extraction of essential oils and separation of biopolymers by using novel and efficient solvent systems. Herein, cassia essential oil enriched in coumarin is extracted from Cinnamomum cassia bark by using a protic ionic liquid (IL), ethylammonium nitrate (EAN), through dissolution and the creation of a biphasic system with the help of diethyl ether. The process has been perfected, in terms of higher biomass dissolution ability and essential oil yield through the addition of aprotic ILs (based on the 1‐butyl‐3‐methylimidazolium (C4mim) cation and chloride or acetate anions) to EAN. After extraction of oil, cellulose‐rich material and free lignin were regenerated from biomass–IL solutions by using a 1:1 mixture of acetone–water. The purity of the extracted essential oil and biopolymers were ascertained by means of FTIR spectroscopy, NMR spectroscopy, and GC‐MS techniques. Because lignin contains UV‐blocking chromophores, the oil‐free residual lignocellulosic material has been directly utilized to construct UV‐light‐resistant composite materials in conjunction with the biopolymer chitosan. Composite material thus obtained was processed to form biodegradable films, which were characterized for mechanical and optical properties. The films showed excellent UV‐light resistance and mechanical properties, thereby making it a material suitable for packaging and light‐sensitive applications.
Keywords:biomass  extraction methods  green chemistry  ionic liquids  thin films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号