Abstract: | A dual‐function material in which ferroelectricity and spin crossover coexist in the same temperature range has been obtained. Our synthetic strategy allows the construction of acentric crystal structures in a predictable way and is based on the high directionality of hydrogen bonds. The well‐known iron(II) spin crossover complex [Fe(bpp)2]2+ (bpp=2,6‐bis(pyrazol‐3‐yl)pyridine), a four‐fold noncentrosymmetric H‐bond donor, was combined with a disymmetric H‐bond acceptor such as the isonicotinate (isonic) anion to afford [Fe(bpp)2](isonic)2⋅2 H2O. This low‐spin iron(II) compound crystallizes in the acentric nonpolar I space group and shows piezoelectricity and SHG properties. Upon dehydration, it undergoes a single‐crystal to single‐crystal structural rearrangement to a monoclinic polar Pc phase that is ferroelectric and exhibits spin crossover. |