首页 | 本学科首页   官方微博 | 高级检索  
     检索      


C−H Direct Arylated 6H‐Indolo[2,3‐b]quinoxaline Derivative as a Thickness‐Dependent Hole‐Injection Layer
Abstract:A novel perfluoro‐1,4‐phenylenyl 6H ‐indolo2,3‐b ]quinoxaline derivative ( TFBIQ ) was designed and synthesized by using a C−H direct arylation method. The optoelectrical properties of the obtained TFBIQ were fully characterized by UV/Vis spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and a group of Alq3‐based green organic light‐emitting diodes (OLEDs). Device A, which used 0.5 nm‐thick TFBIQ as the interfacial modification layer, exhibited the five best advantages of device performance including a minimum turn‐on voltage as low as 3.1 V, a maximum luminescence intensity as high as 26564 cd m−2, a highest current density value of 348.9 mA cm−2 at a voltage of 11 V, the smallest efficiency roll‐off, as well as the greatest power efficiency of 1.46 lm W−1 relative to all of the other tested devices with thicker TFBIQ and also 10 nm‐thick MoO3 as hole‐injection layers (HILs). As a promising candidate for an organic HIL material, the as‐prepared TFBIQ exhibited a strong thickness effect on the performance of corresponding OLEDs. Furthermore, the theoretical calculated vertical ionization potential of the fluorinated TFBIQ suggests better anti‐oxidation stability than that of the non‐fluorinated structure.
Keywords:arylation  heterocycles  hole injection  light-emitting diodes  luminescence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号