首页 | 本学科首页   官方微博 | 高级检索  
     


A Strategy to Design Hyperpolarized 13C Magnetic Resonance Probes Using [1‐13C]α‐Amino Acid as a Scaffold Structure
Abstract:Hyperpolarization is an emerging method that dramatically enhances NMR signal intensity. As a result of their increased sensitivity, hyperpolarized (HP) NMR molecular probes can be used to perform time‐resolved spectroscopy and imaging in vitro and in vivo. It is, however, challenging to design such probes de novo. Herein, the [1‐13C]α‐amino acid is reported as a scaffold structure to design HP 13C NMR molecular probes. The [1‐13C]α‐amino acid can be converted to various HP 13C chemical probes that show sufficient chemical shift change by altering the chemical state of the α nitrogen upon interaction with the target. Several previously reported HP probes could be explained by this design principle. To demonstrate the versatility of this approach, two α‐amino‐acid‐based HP 13C chemical probes, sensitive to pH and Ca2+ ion, were developed and used to detect targets.
Keywords:amino acids  biosensors  dynamic nuclear polarization  hyperpolarization  NMR spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号