首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Crystal Structure of RosB: Insights into the Reaction Mechanism of the First Member of a Family of Flavodoxin‐like Enzymes
Abstract:8‐demethyl‐8‐aminoriboflavin‐5′‐phosphate (AFP) synthase (RosB) catalyzes the key reaction of roseoflavin biosynthesis by forming AFP from riboflavin‐5′‐phosphate (RP) and glutamate via the intermediates 8‐demethyl‐8‐formylriboflavin‐5′‐phosphate (OHC‐RP) and 8‐demethyl‐8‐carboxylriboflavin‐5′‐phosphate (HO2C‐RP). To understand this reaction in which a methyl substituent of an aromatic ring is replaced by an amine we structurally characterized RosB in complex with OHC‐RP (2.0 Å) and AFP (1.7 Å). RosB is composed of four flavodoxin‐like subunits which have been upgraded with specific extensions and a unique C‐terminal arm. It appears that RosB has evolved from an electron‐ or hydride‐transferring flavoprotein to a sophisticated multi‐step enzyme which uses RP as a substrate (and not as a cofactor). Structure‐based active site analysis was complemented by mutational and isotope‐based mass‐spectrometric data to propose an enzymatic mechanism on an atomic basis.
Keywords:AFP synthase  RosB  roseoflavin  Streptomyces davawensis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号