首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Loss of benzene to generate an enolate anion by a site-specific double-hydrogen transfer during CID fragmentation of o-alkyl ethers of ortho-hydroxybenzoic acids
Authors:Attygalle Athula B  Bialecki Jason B  Nishshanka Upul  Weisbecker Carl S  Ruzicka Josef
Institution:Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
Abstract:Collision-induced dissociation of anions derived from ortho-alkyloxybenzoic acids provides a facile way of producing gaseous enolate anions. The alkyloxyphenyl anion produced after an initial loss of CO(2) undergoes elimination of a benzene molecule by a double-hydrogen transfer mechanism, unique to the ortho isomer, to form an enolate anion. Deuterium labeling studies confirmed that the two hydrogen atoms transferred in the benzene loss originate from positions 1 and 2 of the alkyl chain. An initial transfer of a hydrogen atom from the C-1 position forms a phenyl anion and a carbonyl compound, both of which remain closely associated as an ion/neutral complex. The complex breaks either directly to give the phenyl anion by eliminating the neutral carbonyl compound, or to form an enolate anion by transferring a hydrogen atom from the C-2 position and eliminating a benzene molecule in the process. The pronounced primary kinetic isotope effect observed when a deuterium atom is transferred from the C-1 position, compared to the weak effect seen for the transfer from the C-2 position, indicates that the first transfer is the rate determining step. Quantum mechanical calculations showed that the neutral loss of benzene is a thermodynamically favorable process. Under the conditions used, only the spectra from ortho isomers showed peaks at m/z 77 for the phenyl anion and m/z 93 for the phenoxyl anion, in addition to that for the ortho-specific enolate anion. Under high collision energy, the ortho isomers also produce a peak at m/z 137 for an alkene loss. The spectra of meta and para compounds show a peak at m/z 92 for the distonic anion produced by the homolysis of the O--C bond. Moreover, a small peak at m/z 136 for a distonic anion originating from an alkyl radical loss allows the differentiation of para compounds from meta isomers. Copyright (c) 2008 John Wiley & Sons, Ltd.
Keywords:CID  ESI  negative ions  alkyloxybenzoic acid  isotope effect  even‐electron ions  fragmentation  ortho effect  ion neutral complex
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号