首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-bump, self-similar, blow-up solutions of the Ginzburg-Landau equation
Authors:Vivi Rottschäfer
Institution:Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands Centre for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Abstract:For the Ginzburg-Landau equation (GL), we establish the existence and local uniqueness of two classes of multi-bump, self-similar, blow-up solutions for all dimensions 2<d<4 (under certain conditions on the coefficients in the equation). In numerical simulation and via asymptotic analysis, one class of solutions was already found; the second class of multi-bump solutions is new.In the analysis, we treat the GL as a small perturbation of the cubic nonlinear Schrödinger equation (NLS). The existence result given here is a major extension of results established previously for the NLS, since for the NLS the construction only holds for d close to the critical dimension d=2.The behaviour of the self-similar solutions is described by a nonlinear, non-autonomous ordinary differential equation (ODE). After linearisation, this ODE exhibits hyperbolic behaviour near the origin and elliptic behaviour asymptotically. We call the region where the type of behaviour changes the mid-range. All of the bumps of the solutions that we construct lie in the mid-range.For the construction, we track a manifold of solutions of the ODE that satisfy the condition at the origin forward, and a manifold of solutions that satisfy the asymptotic conditions backward, to a common point in the mid-range. Then, we show that these manifolds intersect transversely. We study the dynamics in the mid-range by using geometric singular perturbation theory, adiabatic Melnikov theory, and the Exchange Lemma.
Keywords:Ginzburg-Landau equation  Multi-bump blow-up solutions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号