首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of the 3D structure and dynamics of human DP G-protein coupled receptor bound to an agonist and an antagonist
Authors:Li Youyong  Zhu Fangqiang  Vaidehi Nagarajan  Goddard William A  Sheinerman Felix  Reiling Stephan  Morize Isabelle  Mu Lan  Harris Keith  Ardati Ali  Laoui Abdelazize
Institution:Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, USA.
Abstract:Prostanoids play important physiological roles in the cardiovascular and immune systems and in pain sensation in peripheral systems through their interactions with eight G-protein coupled receptors. These receptors are important drug targets, but development of subtype specific agonists and antagonists has been hampered by the lack of 3D structures for these receptors. We report here the 3D structure for the human DP G-protein coupled receptor (GPCR) predicted by the MembStruk computational method. To validate this structure, we use the HierDock computational method to predict the binding mode for the endogenous agonist (PGD2) to DP. Based on our structure, we predicted the binding of different antagonists and optimized them. We find that PGD2 binds vertically to DP in the TM1237 region with the alpha chain toward the extracellular (EC) region and the omega chain toward the middle of the membrane. This structure explains the selectivity of the DP receptor and the residues involved in the predicted binding site correlate very well with available mutation experiments on DP, IP, TP, FP, and EP subtypes. We report molecular dynamics of DP in explicit lipid and water and find that the binding of the PGD2 agonist leads to correlated rotations of helices of TM3 and TM7, whereas binding of antagonist leads to no such rotations. Thus, these motions may be related to the mechanism of activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号