首页 | 本学科首页   官方微博 | 高级检索  
     


Renner-Teller and spin-orbit vibronic coupling effects in linear triatomic molecules with a half-filled pi shell
Authors:Sioutis Ilias  Mishra Sabyashachi  Poluyanov Leonid V  Domcke Wolfgang
Affiliation:Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany. ilias.sioutis@ch.tum.de
Abstract:The vibronic and spin-orbit-induced interactions among the (3)Sigma(-), (1)Delta, and (1)Sigma(+) electronic states arising from a half-filled pi orbital of a linear triatomic molecule are considered, employing the microscopic (Breit-Pauli) spin-orbit coupling operator. The 6 x 6 Hamiltonian matrix is derived in a diabatic spin-orbital electronic basis set, including terms up to fourth order in the expansion of the molecular Hamiltonian in the bending normal coordinate about the linear geometry. The symmetry properties of the Hamiltonian are analyzed. Aside from the nonrelativistic fourth-order Renner-Teller vibronic coupling within the (1)Delta state and the second-order nonrelativistic vibronic coupling between the (1)Sigma(+) and (1)Delta states, there exist zeroth-order, first-order, as well as third-order vibronic coupling terms of spin-orbit origin. The latter are absent when the phenomenological expression for the spin-orbit coupling operator is used instead of the microscopic form. The effects of the nonrelativistic and spin-orbit-induced vibronic coupling mechanisms on the (3)Sigma(-), (1)Delta, and (1)Sigma(+) adiabatic potential energy surfaces as well as on the spin-vibronic energy levels are discussed for selected parameter values.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号