首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulating the collapse transition of a two-dimensional semiflexible lattice polymer
Authors:Zhou Jie  Ou-Yang Zhong-Can  Zhou Haijun
Institution:Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.
Abstract:It has been revealed by mean-field theories and computer simulations that the nature of the collapse transition of a polymer is influenced by its bending stiffness epsilon(b). In two dimensions, a recent analytical work demonstrated that the collapse transition of a partially directed lattice polymer is always first order as long as epsilon(b) is positive H. Zhou et al., Phys. Rev. Lett. 97, 158302 (2006)]. Here we employ Monte Carlo simulation to investigate systematically the effect of bending stiffness on the static properties of a two-dimensional lattice polymer. The system's phase diagram at zero force is obtained. Depending on epsilon(b) and the temperature T, the polymer can be in one of the three phases: crystal, disordered globule, or swollen coil. The crystal-globule transition is discontinuous and the globule-coil transition is continuous. At moderate or high values of epsilon(b) the intermediate globular phase disappears and the polymer has only a discontinuous crystal-coil transition. When an external force is applied, the force-induced collapse transition will either be continuous or discontinuous, depending on whether the polymer is originally in the globular or the crystal phase at zero force. The simulation results also demonstrate an interesting scaling behavior of the polymer at the force-induced globule-coil transition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号