首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The adsorption of CO on charged and neutral Au and Au2: a comparison between wave-function based and density functional theory
Authors:Schwerdtfeger Peter  Lein Matthias  Krawczyk Robert P  Jacob Christoph R
Institution:Center of Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University (Auckland Campus), Private Bag 102904, North Shore MSC, Auckland, New Zealand. p.a.schwerdtfeger@massey.ac.nz
Abstract:Quantum theoretical calculations are presented for CO attached to charged and neutral Au and Au(2) with the aim to test the performance of currently applied density functional theory (DFT) by comparison with accurate wave-function based results. For this, we developed a compact sized correlation-consistent valence basis set which accompanies a small-core energy-consistent scalar relativistic pseudopotential for gold. The properties analyzed are geometries, dissociation energies, vibrational frequencies, ionization potentials, and electron affinities. The important role of the basis-set superposition error is addressed which can be substantial for the negatively charged systems. The dissociation energies decrease along the series Au(+)-CO, Au-CO, and Au(-)-CO and as well as along the series Au(2)(+)-CO, Au(2)-CO, and Au(2)(-)-CO. As one expects, a negative charge on gold weakens the carbon oxygen bond considerably, with a consequent redshift in the CO stretching frequency when moving from the positively charged to the neutral and the negatively charged gold atom or dimer. We find that the different density functional approximations applied are not able to correctly describe the rather weak interaction between CO and gold, thus questioning the application of DFT to CO adsorption on larger gold clusters or surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号