首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of alkyltin(IV) compounds with ligands of interest in the speciation of natural fluids: carboxylate and hydroxycarboxylate complexes of monomethyltin(IV) trichloride
Authors:Foti Claudia  Gianguzza Antonio  Sammartano Silvio
Affiliation:Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Salita Sperone 31, I-98166 Messina, Vill. S. Agata, Italy.
Abstract:The formation and stability of some carboxylate and hydroxycarboxylate (acetate, 1,2,3-propanetricarboxylate, 1,2,3,4-butanetetracarboxylate, malate and citrate) complexes of monomethyltin trichloride was studied potentiometrically at 25 degrees C and at different ionic strengths in NaNO3 aqueous solution. The following quite stable species are formed in the different systems (M = CH3Sn3+): ML(OH)+, ML2(OH)0, ML(OH)2(0) and M2L(OH)5(0) for acetate; MLH+, ML0, ML(OH)- and ML(OH)2(2-) for propanetricarboxylate; MLH2+, MLH0, ML-, ML(OH)2- and ML(OH)2(3-) for butanetetracarboxylate; ML(OH)0, ML(OH)2- and ML(OH)3(2-) for malate; ML0, ML(OH)-, ML(OH)2(2-) and ML(OH)3(3-) for citrate. Hydroxycarboxylate complexes are significantly stronger than simple carboxylate ones and this is likely to be due to the interaction of the -OH group in citrate and malate with monomethyltin(IV), whose strength was also quantified. It was found that the stability of these complexes can be roughly expressed by the simple relationship log K = a zeta, where zeta is the product of the charges of reactants and log K is the equilibrium constant. For simple carboxylic ligands we have a = 1.8 +/- 0.4 and, for hydroxycarboxylic ligands, a = 3.7 +/- 0.9. Other useful empirical relationships are reported. Moreover, hydroxycarboxylic complexes also play a prominent role in the speciation of monomethyltin(IV) under the pH conditions of interest for natural fluids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号