首页 | 本学科首页   官方微博 | 高级检索  
     


Robust Estimation for Bivariate Poisson INGARCH Models
Authors:Byungsoo Kim  Sangyeol Lee  Dongwon Kim
Affiliation:1.Department of Statistics, Yeungnam University, Gyeongsan 38541, Korea;2.Department of Statistics, Seoul National University, Seoul 08826, Korea; (S.L.); (D.K.)
Abstract:In the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models, parameter estimation is conventionally based on the conditional maximum likelihood estimator (CMLE). However, because the CMLE is sensitive to outliers, we consider a robust estimation method for bivariate Poisson INGARCH models while using the minimum density power divergence estimator. We demonstrate the proposed estimator is consistent and asymptotically normal under certain regularity conditions. Monte Carlo simulations are conducted to evaluate the performance of the estimator in the presence of outliers. Finally, a real data analysis using monthly count series of crimes in New South Wales and an artificial data example are provided as an illustration.
Keywords:integer-valued time series   bivariate Poisson INGARCH model   outliers   robust estimation   minimum density power divergence estimator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号