首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model
Authors:Sarabjeet Singh  Uwe G Köpke  Carl Q Howard  Dick Petersen
Institution:1. School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia;2. Trackside Intelligence Pty Ltd, 17–19 King William Street, Kent Town, South Australia 5067, Australia
Abstract:This paper provides insights into the physical mechanism by which defect-related impulsive forces, and consequently, vibrations are generated in defective rolling element bearings. A dynamic nonlinear finite element model of a rolling element bearing with an outer raceway defect was numerically solved using the explicit dynamics finite element software package, LS-DYNA. A hypothesis was developed to explain the numerical noise observed in the predicted vibrations and contact forces, and the noise frequencies were analytically estimated. In-depth analyses of the numerically estimated dynamic contact forces between the rolling elements and the raceways of a bearing, which are not measured in practice, and have not been reported previously, are presented in this paper. Several events associated with the traverse of the rolling elements through the outer raceway defect are elaborated, and the impulsive force generating mechanism is explained. It was found that the re-stressing of the rolling elements that occurs near the end of a raceway defect generates a burst of multiple short-duration force impulses. The modelling results also highlight that much higher contact forces and accelerations are generated on the exit of the rolling elements out of defect compared to when they strike the defective surface. A bearing with a machined outer raceway defect was tested in a controlled experiment; the measured acceleration response compared favourably with the numerically modelled acceleration results, thereby, validating the low- and high-frequency characteristics of the de-stressing and re-stressing of the rolling elements, respectively.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号