首页 | 本学科首页   官方微博 | 高级检索  
     


FRF-based damage localization method with noise suppression approach
Authors:Mehrisadat Makki Alamdari  Jianchun Li  Bijan Samali
Affiliation:Centre for Built Infrastructure Research (CBIR), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
Abstract:In this paper a noise-robust damage identification method is presented for localization of structural damage in presence of heavy noise influences. The method works based on Frequency Response Functions (FRFs) of the damaged structure without any prior knowledge of the healthy state. The main innovation of this study starts with convolving FRFs with Gaussian kernel to suppress the noise. Denoised signals are then used to develop shape signals according to the second derivative of the operational mode shapes at frequencies in the half-power bandwidth of the center resonant frequencies. The scheme is followed by normalization of shape signals to create a two-dimensional map indicating the damage pattern. The validation of the method was carried out based on simulated data and experimental measurements. The simulated data polluted with 10 percent random noise considering four different conditions: (i) un-correlated noise with Gaussian distribution (ii) noise with non-Gaussian exponential distribution (iii) noise with non-Gaussian Log-normal distribution and (iv) correlated colored noise. The robustness of the method was examined with respect to the damage severity with various damage conditions. Finally, damage detection experiments of a fixed–fixed steel beam are presented to illustrate the feasibility and effectiveness of the proposed method. According to the numerical and experimental investigations, it was demonstrated that the proposed approach presents satisfactory damage indices both in single and multiple damage states in presence of high level noise. Hence, the method can overcome the problems of output measurement noise and deliver encouraging results on damage localization.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号