首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detection of collective motions in dielectric spectra and the meaning of the generalized Vogel-Fulcher-Tamman equation
Authors:Raoul R Nigmatullin
Institution:Theoretical Physics Department, Physical Faculty, Kazan State University, Kremlevskaya str., 18, 420008 Kazan, Tatarstan, Russian Federation
Abstract:Based on the reduction property of dielectric spectra associated with the power-law function ∼(jωτ)±ν] that appears in the frequency domain, one can develop an effective procedure for detection of different reduced motions (described by the corresponding power-law exponents) in temperature domain. If the power-law exponent ν is related to characteristic relaxation time τ by the relationship ν=ν0 ln(τ/τs)/ln(τ/τ0) (here τs, τ0 are the characteristic times characterizing a movement over fractal cluster that is defined in Ref. Ya.E. Ryabov, Yu. Feldman, J. Chem. Phys. 116 (2002) 8610]) and the simple temperature dependence of τ(T)=τA exp(E/T) obeys the traditional Arrhenius relationship, then one can prove that any extreme point figuring in the complex permittivity ε() spectra (characterized by the values ωm, y(ωm)]) obeys the generalized Vogel-Fulcher-Tamman (VFT) equation. This important statement confirms the existence of the ‘universal’ response (UR) (discovered and classified by Jonscher in frequency domain) and opens new possibilities in the detection of the ‘hidden’ collective motions in temperature region for self-similar (heterogeneous) systems. It gives also the extended interpretation of the VFT equation and allows one to differentiate collective motions passing through an extreme point. This differentiation, in turn, allows one to select the proper fitting function containing one or two (at least) relaxation times for the fitting of the complex permittivity function ε() in the limited frequency domain. This conclusion can allow for the classification of dielectric spectroscopy as the spectroscopy of the reduced (collective) motions, which are described by different power-law exponents on the mesoscale region. The verification of this approach on available DS data (poly(ethylene glycol)-based-single-ion conductors) completely confirms the basic statements of this theory and opens new possibilities in general classification of different motions that can be detected in the analysis of the different dielectric permittivity spectra.
Keywords:77  22  Gm  77  22  &minus  d
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号