首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reaction of H + ketene to formyl methyl and acetyl radicals and reverse dissociations
Authors:Jongwoo Lee  Joseph W Bozzelli
Abstract:Thermochemical properties for reactants, intermediates, products, and transition states important in the ketene (CH2?C?O) + H reaction system and unimolecular reactions of the stabilized formyl methyl (C·H2CHO) and the acetyl radicals (CH3C·O) were analyzed with density functional and ab initio calculations. Enthalpies of formation (ΔHf°298) were determined using isodesmic reaction analysis at the CBS‐QCI/APNO and the CBSQ levels. Entropies (S°298) and heat capacities (Cp°(T)) were determined using geometric parameters and vibrational frequencies obtained at the HF/6‐311G(d,p) level of theory. Internal rotor contributions were included in the S and Cp(T) values. A hydrogen atom can add to the CH2‐group of the ketene to form the acetyl radical, CH3C·O (Ea = 2.49 in CBS‐QCI/APNO, units: kcal/mol). The acetyl radical can undergo β‐scission back to reactants, CH2?C?O + H (Ea = 45.97), isomerize via hydrogen shift (Ea = 46.35) to form the slight higher energy, formyl methyl radical, C·H2CHO, or decompose to CH3 + CO (Ea = 17.33). The hydrogen atom also can add to the carbonyl group to form C·H2CHO (Ea = 6.72). This formyl methyl radical can undergo β scission back to reactants, CH2?C?O + H (Ea = 43.85), or isomerize via hydrogen shift (Ea = 40.00) to form the acetyl radical isomer, CH3C·O, which can decompose to CH3 + CO. Rate constants are estimated as function of pressure and temperature, using quantum Rice–Ramsperger–Kassel analysis for k(E) and the master equation for falloff. Important reaction products are CH3 + CO via decomposition at both high and low temperatures. A transition state for direct abstraction of hydrogen atom on CH2?C?O by H to form, ketenyl radical plus H2 is identified with a barrier of 12.27, at the CBS‐QCI/APNO level. ΔHf°298 values are estimated for the following compounds at the CBS‐QCI/APNO level: CH3C·O (?3.27), C·H2CHO (3.08), CH2?C?O (?11.89), HC·CO (41.98) (kcal/mol). © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 20–44, 2003
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号