首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Functionalization of gold electrode surface with heterobifunctional poly(ethylene oxide)s having both mercapto and aldehyde groups
Authors:Fumiyo Kurusu  Hiroyuki Ohno  Mitsuhiro Kaneko  Yukio Nagasaki  Kazunori Kataoka
Abstract:We synthesized heterobifunctional poly(ethylene oxide) (PEO) (α‐formyl‐ω‐mercapto‐PEO; CHO‐PEO400‐SH, average molecular weight of PEO part being 400), which had both an aldehyde group as a binding site with amino group of protein and a mercapto group for gold electrode surface. The CHO‐PEO400‐SH was adsorbed on a gold electrode surface and cytochrome c (cyt.c) was fixed on this modified electrode. The redox response of covalently immobilized cyt.c was observed on the cyclic voltammetry measurement, showing that CHO‐PEO400‐SH can be used as a linker to fix cyt.c on an electrode. Another type of heterobifunctional PEO (α‐formyl‐ω‐(2‐pyridyldithio)‐PEO; CHO‐PEO300‐SS‐Py), which had an aldehyde group and a 2‐pyridinethiol (2‐Py) through disulfide bond, was synthesized to form co‐adsorbed monolayer of PEO chain and 2‐Py on an electrode surface. It was expected, due to the spacer with shorter PEO chain and lower surface density, that better redox response of the fixed cyt.c was obtained. However, the redox response of fixed cyt.c was not detected on the CHO‐PEO300‐SS‐Py modified gold electrode. Instead, this heterobifunctional PEO was found to function as a good promoter for cyt.c dissolved in phosphate buffer solution. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:heterobifunctional PEO  fixation  cytochrome c  gold electrode  redox response
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号